abusesaffiliationarrow-downarrow-leftarrow-rightarrow-upattack-typeburgerchevron-downchevron-leftchevron-rightchevron-upClock iconclosedeletedevelopment-povertydiscriminationdollardownloademailenvironmentexternal-linkfacebookfiltergenderglobegroupshealthC4067174-3DD9-4B9E-AD64-284FDAAE6338@1xinformation-outlineinformationinstagraminvestment-trade-globalisationissueslabourlanguagesShapeCombined Shapeline, chart, up, arrow, graphLinkedInlocationmap-pinminusnewsorganisationotheroverviewpluspreviewArtboard 185profilerefreshIconnewssearchsecurityPathStock downStock steadyStock uptagticktooltiptwitteruniversalityweb

這頁面沒有繁體中文版本,現以English顯示

文章

21 十二月 2018

作者:
Amnesty International

Troll Patrol findings: Using crowdsourcing, data science & machine learning to measure violence & abuse against women on Twitter

These findings are the result of a collaboration between Amnesty International and Element AI,  a global artificial intelligence software product company. Together, we surveyed millions of tweets received by 778 journalists and politicians from the UK and US throughout 2017 representing a variety of political views, and media spanning the ideological spectrum... Amnesty International has repeatedly urged Twitter to publicly share comprehensive and meaningful information about reports of violence and abuse against women, as well as other groups, on the platform, and how they respond to it. On 12 December 2018 Twitter released an updated Transparency Reportin which it included for the first time a section on 'Twitter Rules Enforcement'. This was one of Amnesty International’s key recommendations to Twitter and we see the inclusion of this data as an encouraging step. We are disappointed, however, that the information provided in the transparency report does not go far enough... Our study found that 7.1% of tweets sent to the women in the study were problematic or abusive. This amounts to 1.1 million problematic or abusive mentions of these 778 women across the year, or one every 30 seconds on average. Women of colour were more likely to be impacted - with black women disproportionately targeted with problematic or abusive tweets.

... Amnesty International and Element AI’s experience using machine learning to detect online abuse against women highlights the risks of leaving it to algorithms to determine what constitutes abuse... Human judgement by trained moderators remains crucial for contextual interpretation... Amnesty International’s full set of recommendations to Twitter are available here

時間線

隱私資訊

本網站使用 cookie 和其他網絡存儲技術。您可以在下方設置您的隱私選項。您所作的更改將立即生效。

有關我們使用網絡儲存技術的更多資訊,請參閱我們的 數據使用和 Cookie 政策

Strictly necessary storage

ON
OFF

Necessary storage enables core site functionality. This site cannot function without it, so it can only be disabled by changing settings in your browser.

分析cookie

ON
OFF

您瀏覽本網頁時我們將以Google Analytics收集信息。接受此cookie將有助我們理解您的瀏覽資訊,並協助我們改善呈現資訊的方法。所有分析資訊都以匿名方式收集,我們並不能用相關資訊得到您的個人信息。谷歌在所有主要瀏覽器中都提供退出Google Analytics的添加應用程式。

市場營銷cookies

ON
OFF

我們從第三方網站獲得企業責任資訊,當中包括社交媒體和搜尋引擎。這些cookie協助我們理解相關瀏覽數據。

您在此網站上的隱私選項

本網站使用 cookie 和其他網絡儲存技術來增強您在必要核心功能之外的體驗。